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APPLICATION OF HOT-WIRE TECHNIQUES 
'IN UNSTEADY COMPRESSIBLE F?O\JvS* 

Thomas Vrebalovich 

Abstract Fluctuation Sensitivities and Mode Diagrams 

The interpretation of hot-wire voltage fluctuations 
induced by an unsteady compressible flow field is pre- 
sented. The use of fluctuation mode diagrams to  deter- 
mine the type and amplitude of disturbances detected in 
an unsteady flow is illustrated. Some of the examples 
are the following: unsteady flow in an oscillating 
compressible laminar boundary layer, the potential field 
near such a boundary layer, and the disturbances 
present in a supersonic wind tunnel. The results are 
compared both with theory and with other measuring 
techniques. A practical computational scheme is given 
for the determination of unsteady flow quantities from 
hot-wire results. 

Introduction 

The extension of the hot-wire technique from low- 
speed to high-speed compressible flows provides a use- 
ful tool for determining fluctuations in compressible flow 
fields. The work of Kova'sznay [ l ,  2, 31 and Morkovin 
[41 gives practical computational schemes for deter- 
mining the unsteady quantities in supersonic flow fields. 
This, plus the experimental determination of hot-wire 
heat loss and recovery temperature relations [ l ,  2, 5, 61, 
enables fluctuation measurements to be made. The high 
frequencies present in supersonic flow fields require 
increased frequency response in the new hot-wire 
amplifiers, and this is now attainable [3, 7, 81. The 
increased frequency range also demands the use of 
extremely fine wires  to reduce the thermal lag and to 
give reasonable signal-to-noise ratios. 

With the development of the method of interpreting 
fluctuation measurements, with the law for the loss  of 
heat experimentally determined, with the improvement 
in hot-wire amplifier frequency response, and with the 
feasibility of using extremely fine wires, it is nowpos- 
sible to determine the unsteady flow quantities present 
in  many supersonic flow fields. 

applicability of the hot-wire technique at supersonic 
speeds, several experiments which were conducted a t  
the Je t  Propulsion Laboratory will be described. In 
some of these experiments different techniques, a l l  
involving the use of a hot wire, were applied to get the 
same result. The measurements a lso gave insight into 
the sources of the unsteady flow fields present. Some 
comparisons of results were made with the theoretical 
solutions. 

In order to show the practicability and the 

In order to make fluctuation measurements with a hot 
wire, it is necessary to know a steady-state heat loss  
law. Using simple dimensional analysis, it may be 
shown that Nu = Nu ( M ,  Re,  rwr), where Nu is the Nusselt 
number, M the free-stream Mach number, Re the wire 
Reynolds number, and rwr a wire overheat parameter. 
Laufer and McClellan [ 5 ]  found that for M > 1.3, 
Nu2 = Nu2(Re2 ,  rwr)  only where air viscosity and 
conductivity were determined from the static temperature 
T2 behind the normal shock wave. Since & can be fair- 
ly well appoximated by the total temperature TT , it is 
more convenient to use the total temperature instead of 
T2 as the reference temperature in the heat loss law. 
The Nusselt number is still a function of ReT only and 
reasonably independent of Mach number for M > 1.2 
14 and 71. 

The Nusselt number approaches a constant value as 
the wire overheat value goes to zero, and the unheated 
wire equilibrium temperature is the recovery temperature 
T . Experimentally, it is found that q = q(M, R e T ) =  
</TT. The effect of neglecting the Mach number 
dependence results in a small error in the fluctuation 
sensitivities for M > 1.5. 

Assuming that the t ime constant due to the heat 
capacity of the hot wire has been determined experi- 
mentally (square wave method, [8] ), the basic hot-wire 
equation may be written a s  

A u  A T T  

P U TT 
A e u  - + A e T  - A P  

A e  = - A e p  - - 

where Ae is the voltage fluctuation across the hot wire; 
Ap, Au, and ATT are the fluctuating components of the 
mean flow, density p ,  velocity U, and total temperature 
TT ; and Ae , b e , ,  and AeT are the sensitivity co- 
efficients o f the  hot wire. From Morkovin [41, the 
sensitivity coefficients are given a s  

a Nu a M  T,,,~ r] dM 

Ab M a N u T  1 *This  paper  presents the results of one phase of research 
carried out at the Jet Propulsion Laboratory, California b e u  = A e p  + e+(,--.- 
Institute of Technology, under Contract NAS 7-100, 
sponsored by the National Aeronautics and Space 
Administration. 
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R e ,  d N u ,  1 .I1 d N u ,  

Nu, d R e ,  2a Nu, d M  
+-- - )  

L 

A:, / 1  

where e is the mean voltage across the wire. The 
various parameters can be calibrated directly; their 
definition and method of calibration will be found in the 
Appendix. For mos t  applications the Nusselt vs 
Reynolds number and recovery temperature vs  Reynolds 
number relations need not be determined in situ. 
Provided that end loss effects due to  finite wire length 
are taken into account, the Nusselt vs  Reynolds relation 
for the heat loss  a s  determined by Laufer and McClellan 
[ 5 ]  and others may be used for calculating the quantity 
(Re/Nu)  (dNu/dRe). For a wire Reynolds number greater 
than 1 the recovery temperature data of Laufer and 
McClellan are adequate. 

to mass flow fluctuations. ' h e  hot-wire equation may 
then be written as 

For M >  1.2, AeU= Ae = Ae where hem is the sensitivity 
P 

A m  A T T  
- + e ,  - h e  = - h e  m 

m TT 

where 

m P V  P U 

The mean square of this hot-wire equation is 

or 

three overheat values, three sets of sensitivity coef- 
ficients are obtained. The resulting three independent 
equations may be solved for the three unknowns. 

three overheat values and the results plotted in the 
fluctuation mode diagram employed by Kova'sfnay 121. 
The fluctuation mode diagram is a plot of Ae /AeT  vs 
Aem / h e = .  As can be seen from the mean s uare of the 
hot-wire equation given above, a plot of he'7AeT vs  
he,,, / h e T  must be a conic section with the three un- 
knowns involved a s  the constant coefficients of the 
quadratic equation. Therefore, only three unknown 
quantities may be determined by this method, and 
operating at many overheat values only helps reduce the 
scatter. No further information may be obtained even 
from the original form of the equation, which in  the mean 
square would have s ix  unknowns (Ap ', AIL', AT ') 
Ap Au, Ap AT, and Au AT ). 

Unfortunately, the mass flow and total temperature 
fluctuations are not the characteristic parameters of an 
unsteady supersonic flow field. The application of small- 
perturbation analysis to the equations for consemation 
of momentum, energy, and mass, the equation of state, 
and the division of the fluctuating Bow field into its 
irrotational, solenoidal, and harmonic parts leads to a 
separation of the fluctuating flow quantities into three 
modes [2, 41. These ate the vorticity r,  entropy 0 ,  and 
sound n modes. If the fluctuation field iss t rong,  there 

In practice the hot wire may be operated at  more than 

where 

A m A T ,  

m T  A m ' A T i  
R =  

are moderate second-order interactions; whereas, i f  the 
field is weak, the modes satisfy separate linear dif- 
ferential equations. The hot-wire equation then becomes 

The new sensitivity coefficients are given a s  
h e = o . A e , + r . h e 7 + r r - A e ,  

is the correlation coefficient, and the prime denotes the 
root mean square of the fluctuation; e.g., 

The three unknowns in this equation are AT;) Am', and 
LT . If the fluctuation measurements are  carried out at 

. l e m  = A e p  + a h e T  

A e ,  = P A e T  - b e u  

h e ,  = U ( Y -  l ) ( l - n x d ! ) h e T -  - h e u  - : l e p  
nX 

n1 

A e ' =  Jm. 
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. .  

where a a n d  p are  functions of !.,4ach number M ( see  
Appendix) and the ratio of specific heats y.  In the 
sound mode fluctuation sensitivity, I+ is the direction 
cosine of the normal to a plane sound wave. It is 
possible for nr to have more than one value i f  there are  
several sound wave directions. 

The fluctuation variables given as a function of the 
modes are 

A T  

T 
_ _ -  - u + (y- l )n  

- -  - - D i n  
A P  

F 

A .. n x  7i 

I’ A! 

‘3 u 
- -  - I - + -  

In general it is not possible to decompose hot-wire 
measurements into the individual modes. Yorkovin 141 
suggested a scheme for determining the entropy, 
vorticity, and sound modes; this method i s  not only 
useful when at least one of the modes or certain of the 
correlations may be neglected, but gives insight into 
the fluctuations which may be present. By plotting the 
fluctuation mode diagram of . l e  ‘ / l e c  vs  Ae, / lec  i t  i s  
sometimes possible to determine which fluctuations or 
correlations may be neglected. The usual  shape of the 
diagram in th i s  coordinate system is the rectangular 
hyperbola, and the detailed method for graphically 
reducing the data is described by fdorkovin [4]. 

Ex per irnen to I Equ i pmen t 

The expe:imes:s xe:e cszduc:ed iz :he Je: ?:cpu!sion 
Laboratory 18 x 20-in. supersonic wind tunnel. A 
detailed descri tion of the equipment used may be found 
in [ 8 ,  9, and 10 !I . 

All of the hot wires were 90% platinum and 10°C 
rhodium with diameters of 0.00005 or 0.0001 in. and 
were 0.010 to 0.020 in. long. A typical boundary-layer 
probe consisted of a razor blade 0.060 in. wide and 
0.004 in. thick attached to a strut. Two jeweler’s 
broaches were glued to  the blade and extended 0.050 in. 
in front of it as shown in Fig. 1. 

The Shapiro and Edwards !$!ode1 50i3 constant-current 
hot-wire set had an amplifier with a frequency response 
up to 300 kc. It had an equivalent input noise less than 
that of a 1000-ohm resistance and an input transformer 
which could reduce the input noise effect by a factor of 
at least four. 

M 

Figure 1. Hot-wire probe 
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Experimental Results 

1 .  The Propagat ion Velocity of a Dis turbance  i n  a 
Supersonic Laminar Boundary Layer on a Flat P l a t e .  
One of the problems encountered in the laminar boundary 
layer stability program [9]  w a s  that of determining the 
propagation velocity of a disturbance in the layer. 
Disturbances originating near the leading edge of the 
plate propagate along the plate a s  Tollmien waves a t  
their own propagation velocity. A disturbance generator 
near the leading edge of a Bat plate was a source of 
single-frequency disturbances up to 90 kc. A photocell 
in the flat plate near the disturbance generator monitored 
the frequency of the artificial disturbance. A hot wire in 
or near the boundary layer a l so  could detect  the artificial 
disturbance . 
photocell and hot-wire output at the artificial disturbance 
frequency and plotting this difference a s  the hot wire 
was moved aft on the flat plate, a curve like that shown 
in Fig. 2 could be obtained. The maxima correspond to 
out-of-phase signals and the minima to in-phase signals. 
The distance between maxima (or minima) is the wave- 
length of the signal. The propagation velocity (wave 
velocity) is then 

By taking the mean square of the difference of the 

U, = A f  = 0.60 U 
where A is the wavelength, f the frequency of the dis- 
turbance, and U the free-stream velocity. 

Of incidental value to the above discussion, but 
important in illustrating the versatility of the hot wire, 
is the second curve on Fig. 2. This curve was obtained 
by feeding the galvanometer output of the hot-wire 
bridge to a servo system which kept the resistance of 
the wire constant and the resistance bridge balanced by 
moving the wire vertically in the boundary layer. Since 
the laminar boundary layer profiles were similar, the wire 
was maintained at a constant percentage of the boundary 
layer thickness as the wire was moved aft. A laminar 
boundary layer grows parabolically on a flat plate, which 
is confirmed by the second curve in Fig. 2. 

There is a second technique for determining the 
propagation velocity which is not as accurate but 
requires only a single hot-wire output and the fluctuation 
mode diagram. The boundary layer oscillation may be 
considered to be a moving wavy wall. For a stationary 
wavy wall with flow moving past, the pressure coefficient 
[IO] is 

and 

2 h u  c = - -  
P 

U T  

A P  c =- 
P 

XM: P 
2 

and therefore 

I . '  

Figure 2. Wavelength measurement of an ar t i f ic ia l  disturbance 

ox 

U T  ? M , 2  p 
n L 

in terms of the rms fluctuation, where u, is the relative 
velocity past  the stationary wavy wall, M, = & / a ,  a is 
the local speed of sound, and P the mean static 
pressure. For a wavy wall moving at a propagation 
velocity U,, the free-stream velocity is then 

Substituting this  in the above equation, 
u = u, 4- u, 

A P '  - 
c'c P 
- =  1 - 

L' AU' 
yM2 - 

U 

where Jf is the free-stream Mach number. Thus by 
measuring A P ' / P  and Au'/U, U, may be calculated. 
Furthermore, outside the boundary layer an  isentropic 
relation between fluctuations may be assumed: 

h P  y A p  y A T  

P P 7-1 T 
- = _ _ = - -  

Examination of the mode diagram of the artificial 
disturbance in Fig. 3 taken outside the boundary layer 
indicates that the plot of A e ' / h e T  v s  Ae,/AeT is a 
straight line. The significance of this becomes apparent ' 
from the mean square of the hot-wire equation 

Q 2  = 

. I  
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Figure 3. Fluctuation mode diagram, Ae ' / h e T  vs he,/AeT 

where the correlation coefficient is 

A T ,  A m  

R m ~  A m '  
- - 

Since the mode diagram is a straight line, R,, = -1, 
which indicates that Am and AT, are anticorrelated, 
and that obviously 

he' A T , '  h e ,  A m '  

h e ,  T ,  A e ,  m 
+-- -=- 

It is clear then that the intercept of the straight line is 
ATT/TT and the slope is Am' /m.  

From the isentropic relations and 

A m  h u  h p  + -  - - -  - 
n u p  

A T  A u  -- - a - + P - -  A T T  

T T  T U 

the following is obtained: 

Solving these two equations for Au/U and hp/P and 

taking rms values of the fluctuations, Au'/U and 
hp'/P are found a s  a function of the known quantities 
&E'/= a d  h T ; / T r .  

The propagation velocity determined from the use of 
the mode diagram is U, / U  = 0.G0, and this result 
compares well with U,/U = 0.62, which is both the 
theoretical value and that obtained by the first method 
described. In the latter method the use of the mode 
diagram plus the isentropic relations allowed a complete 
determination of all  of the fluctuating quantities outside 
the edge of the oscillating laminar boundary layer. 
From the & for a wavy wall, it was then possible to 
calculate the velocity of propagation of a Tollmien wave 
of a given frequency. 

2. Amplitude Distribution of Disturbances Across a 
Supersonic Laminar Boundary Layer on a Flat Plate.  
The fluctuation profile of the oscillation present in an 
at&c;a;l 
mined in [8]. In Example 1, all of the fluctuating 
quantities were determined outside the layer. Clearly 
the isentropic relations will not be valid inside the 
layer and another relation m u s t  be determined. By a 
qualitative argument, which was substantiated by the 
theory, it seemed likely that the pressure fluctuations 
would be constant throughout the layer. 

The mass flow and total temperature fluctuation 
profiles were determined from mode diagrams and are  
plotted in Fig. 4. The solution is shown only for the 
supersonic region. The mode diagram and the 
assumption of constant pressure fluctuations through 
the layer result in two roots and an undetermined phase 
relation between the pressure and velocity (or tempera- 
ture) fluctuations. Near the outer edge of the layer the 
phase could be determined by matching it to  the one 
just outside the layer. The two roots define two 
completely different sets of velocity and temperature 
distributions. The points shown in Fig. 5 correspond to  
the roots of the hot-wire equation which were nearest 
the theoretical curves. With respect to the pressure 
fluctuations which are plotted in a positive sense ,  a l l  
the points plotted in a positive sense  are in phase and 
those in a negative sense are 180 deg out of phase with 
the pressure fluctuations. The results of the chosen set 
of roots compare favorably with the theoretical solution. 

distilrbed laniinar boiiiidary layer w a s  deter- 

3. Free-Stream Fluctuations in a Supersonic Rind 

0 0040 

??~=400,Uc=062 U 
THEORY - Ref 13 

0 0030 

0 0020 

~ 00010 

k 
L 

: l o  v) 

a i  
-0 0010 s 

0 0 2  0 4  0 6  0 8  I O  1 2  14 16 

~ 1 8  

Figure 4. Mass flow and total temperature fluctuations in a 
laminar boundary layer 
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Tunnel. In low-speed wind tunnels the turbulence level 
of the free stream has strongly affected certain types of 
experiments, and it is  expected that fluctuations in a 
supersonic Row field will  also be important. The results 
of experiments conducted in the JPL supersonic wind 
tunnels indicated that the fluctuations in the free stream 
are sound radiation from the turbulent boundary layers 
on the walls of the tunnel  [I1 and 121. 

The employment of the hot wire in several types of 
experiments he1 ed  establish this result. First, both 
the Kova'sznay p2] and the Morkovin [41 types of mode 
diagrams were made from data taken by the hot wire 
near the center line of the tunnel; these resul ts  are 
shown in Figs. G and 7. The mode diagram of Fig. G is 
similar to that presented in the first example. Again the 
mass flow and total temperature fluctuations are anti- 
correlated. After considering the many possible types 
of fluctuations that could be present in the flow field, 
consistent with the mode diagrams of Figs. 6 and 7, it is 
clear that the only possible simple fluctuation field is a 
pure sound field in which the isentropic relations between 
fluctuating quantities hold. 

In a pure sound field the relation between the particle 
velocity normal to the wave front A% and the pressure 
hp can easily be changed to a relation between the 
velocity variation in the direction of the mean flow Au 
and hp. Of course, this relation is identical to the wavy 
wall solution found in the first example. In fact, the 
velocity for the sound field source may be determined 
from the relations derived in Example 1 by determining 
Au' and AP' as was done in Example 1. 

Although the second type of mode diagram is not 
needed to  completely determine the problem, this type 
of mode diagram will be presented to illustrate its 
application. The hot-wire equation for a pure sound 
field simplifies to [41 

where 

When 

1 + ( 7 -  1) M 2  

- -  . l e  n' = (2) 
- 0, 

.l e, f 
which is the interceDt on the ordinate axis. When 

0 0008 

I- 
% 00004 
I 
in 

w t  
8 -00004 - 

Re=400.Uc=062 U 

-00008 

-00012 

-00016 

Figure 5. Velocity, temperature, and pressure fluctuations in 
a laminar boundary layer 

which is the intercept on the absc issa  axis. 

solving for n,, 
Substituting in the definition of g given above and 

The direction that the wave front makes with the mean 
flow is 

- 1  8 = 180 deg - cos (n,) 
The orientation of the waves and thereby the source 

velocity may now be determined: 

1 u - u, 

U U cos e 
where U, is the relative velocity pas t  a stationary 
source and Uc the source velocity in the boundary layer 
when the free-stream velocity is U .  Then 

L' C 1 
- -  - 1 +  

and for 8 = 180 deg - cos-  ' (n ,  ), 

1 
- 1 + -  

L' c 
_ _ -  

Therefore 

U C  
- 

U 

.\ P ' 
1 P 

1 + - -  - 1 -  
hlnx A u t  

YAP - 
U 
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Figure 6. Fluctuation mode diagram, Ae ‘ /AeT vs Aem/AeT 

The results of many of these measurements are plotted 
in Fig. 8. 

A second method of determining the velocity of the 
disturbances in  the boundary layer was simply to make 
a time correlation measurement between two hot wires 
in the Bow field. This technique is comparable with the 
space correlation measurement in the first example, and 
the results are a l so  presented in Fig. 8. The correlation 
measurements were made near the higher Reynolds 
number on Fig. 8 and the two methods of determining 
the  source velocity gave comparable results. 

It should be mentioned that the level of fluctuations 
in the tunnel increased with ldach number. A t  a given 
!dach number the amplitude of the fluctuations in the 
tunnel increased a s  the tunnel pressure and Reynolds 
number were decreased. The wall boundary layers in- 
creased in  thickness with decreasing tunnel pressure 
until they became laminar. A t  this point the amplitude 
of the fluctuations sharply decreased. This provided 
further evidence that the wall boundary layers ac t  a s  a 
sowce of moving disturbances which radiate sound into 
the free stream of the tunnel. 

Figure 7. Fluctuation mode diagram, Ae‘/Aemvs Ae7/Aem 
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APPENDIX 
Computation of Hot-wire Fluctuations 

To begin the outline of the computational technique, 
the pertinent nomenclature and necessary data are 
given a s  follows: 
M free-stream Mach number 
TT supply temperature, OK 
PT supply pressure, c m  Iig 
d diameter of wire, cm 
1 length of wire, c m  
K ,  heat conductivity of wire 
K T  
R L  lead resistance 
R ,  heated resistance of wire 
R ,  recovery resistance of wire (unheated) 
cy first-order temperature coefficient of resistance 

at O°C 

y, second-order temperature coefficient of resistance 
a t  o'c 

i wire current 

heat conductivity of air a t  TT 

/.LT viscosity of air at TT 
MT t i m e  constant of wire 
h e  rms fluctuation of voltage across wire 

for air 

?1 7, 110.2 

1 y = 1.4 
a = (1 + 0.2M2) 
p = 0.4 aM2 

1. Calculate R e T :  (Sutherland, viscosity) 

P T d  ReT = 0.636 x lo6 

G 3 
( 1  t 0.2112) 

2. From the Reynolds number determine infinite length 
wire Nusselt number Rum from the following 'empirical 
formulas : 

For M >_ 1.2 and R q  < 16, 

Nu, = 0.00268 R e ;  -0.0313 - 

0.135 R e ,  + 0.0423 Re14 - 0.00.528 

For M 2 1.2 and R e :  16, 

Nu, = -0 .52  + 0 . 4 5 7 4  R e ,  

3. Calculate the recovery temperature ratio term 
ReT dl - - .  
7 a R e T '  

See Table A-1. 

4. Calculate : '1 d M  
For 1.2 < M < 1.5, 

1 = 0.95 + 0.043 (1.5 - .M)3'2 
For Mz 1.5, 

- 0 d M  = 
5. For the end loss  correction, calculate the follow- 

ing: 

I Rw - R r  
aw = 

R r 
R r  

R -  f -  1 + U f  ( T ,  - 273) 

Note that R, = R, {1 + q ( T ,  - 273)+yf [ q ( T w  - 273I2II 
where T, is the heated-wire temperature 

K T  = (0.6bb + 0.0187) x 10' 
End loss parameter: 

Nu:= measured Nusselt number (see s tep 7) 
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Table A-1. Recovery temperature ratios for M 2 1.2 e = i R w  

1 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

25 

30 

40 

50 

100 

'I 

1.04 

1.03 

1.01 

0.990 

0.979 

0.972 

0.967 

0.964 

0.961 

0.958 

0.956 

0.954 

0.950 

0.947 

0.945 

0.945 

dq 

0.057 

0.052 

0.044 

0.038 

0.033 

0.029 

0.026 

0.023 

0.021 

0.020 

0.019 

0.016 

0.014 

0.011 

0.009 

0 

Iyud= Nusselt number determined by inverse end loss 
correction applied to infinite length wire 

Ku, should equal Nu;; this provides a check on the 
accuracy of the measurements. 

0.6 $ 2  1.1 # 
,Yu, = K U m  + - + 

l+a:,  dx 
where Num is found from step 2. 

ReT dNu,  
NU,,, d R e T .  

- , 6. Calculate- - . 

where d h ' b / d R e T  is calculated from s tep  2. 

voltage across the wire: 
7. Calculate e ,  r,, Nu;, and K ,  where e = the dc 

8. Calculate A:: 

Experimentally it is easier  to  determine A :  from a plot 
of 

Within the scatter this plot is usually a straight line. 
From this plot determine c, where 

i 2 R w  
d 

R W  - R r  1 

Then 
I 

OW 
A ; = 

cu:, 

1 - cu; 
1 - (1 + U k )  

9. Calculate E': 

- E =  

Rw + R L  + z 

1--E 

1 + 2 A ; e  
E '  = 



where R L  is the lead resistance and z is the ratio of 
the open circuit voltage to the short circuit current. 

constant equation is 
10. Calculate the t i m e  constant correction. The t i m e  

C' A,: 
M, = (1 - 2 Y , 4  

0.239 a,  R ,  i 2 ( 1  + ~ A A E )  

where c' is the thermal capacity of thewire. The time 
constant is determined by the square wave method for 
each overheat value; the above equation is used to 
check the experimental values rather than to determine 
absolute values. 

Determine from the t i m e  constant equation 

where MT,,, is themeasure time constant. If MT, is 
accurately determined, CT, will be the same for a l l  
overheat values at a given tunnel condition. Since this 
is not usually the case, an average CT or a value that 
is averaged by eliminating the poorest measurements is 
determined. Then 

c 
, (average) 

,(measured) 

hf = dt 
,(corrected) c 

For the hiph frequencies encountered in supersonic flow 
fields, he may be corrected by the following [14]: 

11. Calculate sensitivity coefficients: 

Re T d N U ,  A: R e ,  

NU,,, d R e ,  r,, d R e T  
b e p  = e E '  [ A h  

R e ,  d N U ,  
- 1.885 + 0.765 - - 

h'u, a R e ,  

+ - - - -  
2a Nu,,, a M 

1 f.765 Re aRe + -  2 a  

I a N u m )  

w,  

12. Calculate and plot the following: 

A e '  e P  
vs  - 

. l e T  A e T  

-I e ' A e 7  
- v s  - 
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